EBNF Grammar for Objective Modula-2

Typography

¢ Production rules are shown in fixed width

Alias rules are shown in italic fixed width

Reserved words are shown in UPPERCASE BOLDFACE

Other terminal symbols are shown in lowercase boldface

EBNF Notation

¢ Alternatives are separated by a vertical bar |
¢ Groups of entities are enclosed in parentheses ()

Reserved symbols are shown in ‘single quotes’ or “double quotes”

* One or more occurrences are indicated by a trailing raised plus sign +

* Zero or more occurrences are indicated by a trailing raised asterisk *

e Zero or one occurrences are indicated by a trailing raised question mark ?

Compilation Units

(1) compilationUnit

programModule | definitionOfModule | implementationOfModule |

protocolModule

(2) programModule
MODULE moduleId (“[“ priority “]17)? “;~

importList* block moduleId “.”

(3) definitionOfModule
DEFINITION MODULE moduleId *“;”

importList* definition®*

END moduleId “.”

(4) implementationOfModule
IMPLEMENTATION programModule

(5) protocolModule

PROTOCOL protocolId (" (" adoptedProtocols ")"

importList* (OPTIONAL? methodHeader)*
END protocolId “.”

(6) moduleId = ident

(7) priority = constExpression

(8) protocolId = ident

(9) adoptedProtocols = identList

Copyright © 2009 The Objective Modula-2 Project

)? ",

"

Page 1 of 15

EBNF Grammar for Objective Modula-2

Import Lists, Blocks, Declarations, Definitions

(10) importList
(FROM moduleId IMPORT (identList | “*”) | IMPORT identList) “;”

(11) block
declaration*

(BEGIN statementSequence)? END

(12) declaration
CONST (constantDeclaration “;”)* |
TYPE (typeDeclaration “;”)* |
VAR (variableDeclaration “;”)* |

procedureDeclaration “;" |

methodDeclaration “;”

(13) definition
CONST (constantDeclaration “;”)* |
TYPE (ident (“=" (type | OPAQUE) | IS namedType) “;”)* |
VAR (variableDeclaration “;”)* |

procedureHeader “;” |
methodHeader “;”

Constant Declarations

(14) constantDeclaration

ident “=" (constExpression | structuredvalue)
Type Declarations
(15) typeDeclaration

ident (“=" type | IS namedType)
(16) type

namedType | anonymousType | enumerationType | setType | classType
(17) namedType = qualident

(18) anonymousType
arrayType | recordType | pointerType | procedureType

(19) enumerationType
ENUM (“(” baseType “)”)? identList? END |
“(" identList *)"

(20) baseType = qualident

Status: October 4, 2009 Page 2 of 15

EBNF Grammar for Objective Modula-2

(21) arrayType
ARRAY arrayIndex (“,” arrayIndex)*
OF (namedType | recordType | procedureType)

(22) arrayIndex = ordinalConstExpression
(23) ordinalConstExpression = constExpression

(24) recordType
RECORD (“(” baseType “)")? fieldListSequence? END

(25) fieldListSequence
fieldList (“;” fieldList)*

(26) fieldList
identList “:"

(namedType | arrayType | recordType | procedureType)

(27) classType
“<*QUALIFIED*>"? CLASS “(" superClass (“," adoptedProtocols)? “)"
((PUBLIC | MODULE | PROTECTED | PRIVATE)?

fieldListSequence)*
END

(28) superClass = qualident

(29) setType
SET OF (namedType | “ (" identList “)")

(30) pointerType
POINTER TO IMMUTABLE? namedType

(31) procedureType

PROCEDURE
(“(" formalTypeList “)”)?
(“:" returnedType)°?

(32) formalTypelList
attributedFormalType (“,” attributedFormalType)*

(33) attributedFormalType
IMMUTABLE? VAR? formalType

(34) formalType
(ARRAY OF)? namedType

(35) returnedType = namedType

Copyright © 2009 The Objective Modula-2 Project Page 3 of 15

EBNF Grammar for Objective Modula-2

Variable Declarations

(36) variableDeclaration

ident (“[” machineAddress “]” | *,” identList)?

“:" (namedType | anonymousType)

(37) machineAddress = constExpression

Procedure Declarations

(38) procedureDeclaration

procedureHeader “;” block ident

(39) procedureHeader

PROCEDURE
(“(” ident “:"” receiverType “)")?
ident (“(” formalParamList “)”)? (“:” returnedType)°?

(40) receiverType = ident

(41) formalParamList

formalParams (“;” (formalParams variadicParams))*

(42) formalParams

IMMUTABLE? VAR? identList “:” formalType

(43) variadicParams
VARIADIC handle (“[“ indexParam “]1")? OF

IMMUTABLE? VAR? (ident ((“.” ident)* | (“,” ident)* “:” formalType)
(44) handle = ident

(45) indexParam = ident

Method Declarations

(46) methodDeclaration
methodHeader “;” block ident

(47) methodHeader
CLASS? METHOD

“(" ident “:" (receiverClass | “*") “)"
(ident | methodArg) methodArg*

(“:" returnedType)°?

(48) receiverClass = qualident

Status: October 4, 2009 Page 4 of 15

EBNF Grammar for Objective Modula-2

(49) methodArg
colonldent “(” IMMUTABLE? VAR? ident “:” formalType “)”

Statements

(50) statement
(assignmentOrProcedureCall | methodInvocation |
ifStatement | caseStatement | whileStatement | repeatStatement |
loopStatement | forStatement | tryStatement | criticalStatement |

RETURN expression? | EXIT)?

(51) statementSequence

statement (“;” statement)*

(52) methodInvocation

“[" receiver message “1"

(53) receiver

ident | methodInvocation

(54) message
ident (colonIdent expression)* |

(colonIdent expression)*t

(55) assignmentOrProcedureCall
designator

(“:=" (expression | structuredvalue) | “++" "o

actualParameters)°?

(56) ifStatement

IF expression THEN statementSequence

(ELSIF expression THEN statementSequence)*
(ELSE statementSequence)?

END

(57) caseStatement
CASE expression OF case (“|” case)*
(ELSE statementSequence)?
END

(58) case

caseLabellist “:” statementSequence

(59) caseLabellList

caseLabels (“,” caseLabels)*

Copyright © 2009 The Objective Modula-2 Project Page 5 of 15

EBNF Grammar for Objective Modula-2

(60) caseLabels

constExpression (“..” constExpression)?

(61) whileStatement
WHILE expression DO statementSequence END

(62) repeatStatement
REPEAT statementSequence UNTIL expression

(63) loopStatement
LOOP statementSequence END

(64) forStatement
FOR ident “:=" expression TO expression (BY constExpression)?

DO statementSequence END

(65) tryStatement
TRY statementSequence
ON ident DO statementSequence
CONTINUE statementSequence
END

(66) criticalStatement
CRITICAL “("” classInstance ")"
statementSequence
END

(67) classInstance = qualident

Expressions

(68) constExpression

simpleConstExpr (relation simpleConstExpr | “::” namedType)?

(69) relation
u—n | uggn | uen | Hg=n usn "y —n | IN | Is

(70) simpleConstExpr

(“+” | “=")? constTerm (addOperator constTerm)*

(71) addOperator
uyn | u_n | OR

(72) constTerm

constFactor (mulOperator constFactor)*

(73) mulOperator
"y | u/n | DIV | MOD | AND | ugn

Status: October 4, 2009 Page 6 of 15

EBNF Grammar for Objective Modula-2

(74) constFactor
number | string | qualident | “(” constExpression “)” |
(NOT | “~") constFactor

(75) designator

qualident (designatorTail)?

(76) designatorTail

((“["” expressionList “]” | “*7) (“.” ident)*)+

(77) expressionList

expression (“,” expression)*

(78) expression

simpleExpression (relation simpleExpression “::" namedType)°?

(79) simpleExpression

(“+” | “=")? term (addOperator term)*

(80) term

factor (mulOperator factor)*

(81) factor
number | string | designatorOrProcedureCall | methodInvocation

“(" expression “)” | (NOT | “~") factor |

(82) designatorOrProcedureCall

qualident designatorTail? actualParameters?
(83) actualParameters

“(" expressionList? “)”
Value Constructors

(84) structuredvalue

“{" (valueComponent (“,” valueComponent)*)? #}~

(85) valueComponent
constExpression ((BY | “..”) constExpression)? |
structuredvalue

Identifiers

(86) qualident

ident (“.” ident)*

Copyright © 2009 The Objective Modula-2 Project Page 7 of 15

EBNF Grammar for Objective Modula-2

(87) identList

ident (“,” ident)*

Pragmas

(88) pragma
ugkn
(IF | ELSIF) constExpression | ELSE | ENDIF |
(INFO | WARN | ERROR | FATAL) compileTimeMessage |
INLINE | NOINLINE | FRAMEWORK | IBACTION | IBOUTLET | QUALIFIED |

implementationDefinedPragma (“+" | “-7 | “=" (ident | number))?

) ">
(89) compileTimeMessage = string

(90) implementationDefinedPragma = ident

Terminal Symbols

(91) ident
(“ ™ | “$” | LETTER) (“_" | “$” | LETTER | DIGIT)*

(92) colonIdent

ident “:”

(93) number
DIGITt |
BINARY-DIGIT+ “B" |

DIGIT SEDECIMAL-DIGIT* (“C” | “H") |
DIGITY “.” DIGIT* (“E” (“+" | “-7)? DIGITY)?
(94) string
uain (CHARACTER | 11y)* uan
1ur (CHARACTER | u 1 u)* 1ur
(95) DIGIT
IIAII .o IIZII lla,’ .o llz,’
(96) DIGIT
BINARY-DIGIT | un | uzmn | upnm | ugn | ugn | ugn | ugn | ugn

(97) BINARY-DIGIT
uqn | uinm

(98) SEDECIMAL-DIGIT
DIGIT | upn | ugn | el | upn ugn upn

Status: October 4, 2009 Page 8 of 15

EBNF Grammar for Objective Modula-2

(99) CHARACTER
DIGIT | LETTER |
u u | uyn | u#n

u [” | u] ” | u~mr

ESCAPE-SEQUENCE
(100) ESCAPE-SEQUENCE

u \ ” (uqn | upn
Ignore Symbols

(101)WHITESPACE
| ASCII-TAB

(102) COMMENT

NESTABLE-COMMENT | NON-NESTABLE-COMMENT | SINGLE-LINE-COMMENT

(103)NESTABLE-COMMENT

u$n

"o
H

V7

7R
r

"o
r

u>

ugn

“en

un

II{II

ll\ll

" ("
“u—=n

uln

uan

u) "
usn

II}II

441

| "y
| uQn

| u_n

)

| "y |
| u@n |

“(*" (ANY-CHAR | END-OF-LINE)* NESTABLE-COMMENT* *“%*)”

(104)NON-NESTABLE-COMMENT

“/%" (ANY-CHAR | END-OF-LINE)* “%/"

(105)SINGLE-LINE-COMMENT

“//" ANY-CHAR* END-OF-LINE

(106) ANY-CHAR

ASCII(8) | ASCII(32)

(107)END-OF-LINE

. ASCII(127)

ASCII-LF ASCII-CR? | ASCII-CR ASCII-LF?

Copyright © 2009 The Objective Modula-2 Project

| ANY-UNICODE

Page 9 of 15

EBNF Grammar for Objective Modula-2

Reserved Words

AND ARRAY BEGIN BY BYCOPY BYREF CASE CLASS CONST CONTINUE CRITICAL DEFINITION
DIV DO ELSE ELSIF END ENUM EXIT FOR FROM IF IMMUTABLE IMPLEMENTATION IMPORT IN
INOUT IS LOOP METHOD MOD MODULE NOT OF ON OPAQUE OPTIONAL OR OUT POINTER PRIVATE
PROCEDURE PROTECTED PROTOCOL PUBLIC RECORD REPEAT RETURN SET SUPER THEN TO TRY
TYPE UNTIL VAR VARIADIC WHILE

Reserved Symbols

= -k /s s m = F<<=>>= " () LT LY., g e i<k x>

Pragma Identifiers

IF ELSIF ELSE ENDIF INFO WARN ERROR FATAL INLINE NOINLINE FRAMEWORK IBAction
IBOutlet QUALIFIED

Status: October 4, 2009 Page 10 of 15

EBNF Grammar for Objective Modula-2

Cross Reference

Symbol
actualParameters
addOperator
adoptedProtocols
anonymousType
ANY-CHAR
arrayIndex
arrayType
assignmentOrProcedureCall
attributedFormalType
baseType
BINARY-DIGIT
block
case
caseLabellist
caseLlabels
caseStatement
CHARACTER

classInstance

classType
colonIdent

COMMENT
compilationUnit
compileTimeMessage
constantDeclaration

constExpression

constFactor

constTerm

Copyright © 2009 The Objective Modula-2 Project

Rule
80

68

18
103
22
21
52
33
20
94
11
55
56
57
54
96

64

27
89

99

86
14

65

71

69

Referenced from

52, 79

67, 76

5, 27

16, 18, 36
100, 101, 102
21

18, 26

47

32

19, 24

90, 93

54
55
56
47
91

63

16

46, 51

85
12, 13

7, 14, 23, 37,
71, 82, 85

69, 71

67

57, 61,

Page 11 of 15

EBNF Grammar for Objective Modula-2

Symbol
criticalStatement
declaration
definition
definitionOfModule
designator
designatorOrProcedureCall
designatorTail
DIGIT
END-OF-LINE
enumerationType
ESCAPE-SEQUENCE

expression

expressionList
factor

fieldList
fieldListSequence
formalParamList
formalParams
formalType
formalTypeList
forStatement
handle

ident

identList
ifStatement
implementationDefinedPragma

implementationOfModule

Status: October 4, 2009

Rule
63
12
13
3
72
79
73
93
104
19
97

75

74
78
26
25
41
42
34
32
61
44

88

84
53

87

Referenced from
47

11

52

78

72, 79

88, 90, 95, 96
100, 101, 102
16

96

47, 51, 52, 53, 54, 58,
59, 61, 74, 78

73, 80

77, 78

25

24, 27

39

41

33, 42, 46

31

47

43

6, 8, 13, 14, 15, 36, 38,
39, 40, 43, 44, 46, 50,
51, 61, 62, 73, 83, 84,
85, 87, 89

9, 10, 19, 26, 29, 36, 42
47

85

Page 12 of 15

EBNF Grammar for Objective Modula-2

Symbol
importList
indexParam
LETTER
loopStatement
machineAddress
message
methodArg
methodDeclaration
methodHeader
methodInvocation
moduleId
mulOperator

namedType

NESTABLE-COMMENT
NON-NESTABLE-COMMENT
number
ordinalConstExpression
PointerType

pragma

priority
procedureDeclaration
procedureHeader
procedureType
programModule
protocolId
protocolModule

qualident

receiver

Copyright © 2009 The Objective Modula-2 Project

Rule
10
45
92
60
37
51
46
43
44

49

70

17

100
101
90
23
30

85

38

39

32

83

50

Referenced from
2, 3,5
43
88, 96
47
36
49

44

69, 77

le¢, 21, 26, 29, 30, 34,

99, 100

99

71, 78, 85
22

18

12

13, 38

18, 21, 26

17, 20, 28, 45, 64, 71,
72, 79

49

Page 13 of 15

EBNF Grammar for Objective Modula-2

Symbol Rule Referenced from
receiverClass 45 44
receiverType 40 39
recordType 24 18, 21, 26
relation 66 65, 75
repeatStatement 59 47
returnedType 35 31, 39, 44
SEDECIMAL-DIGIT 95 90
setType 29 16
simpleConstExpr 67 65
simpleExpression 76 75
SINGLE-LINE-COMMENT 102 929
statement 47 48
statementSequence 48 11, 53, 54, 55, 58, 59,

60, 61, 62, 63

string 91 71, 78, 86
structuredvalue 81 14, 52, 82
superClass 28 27
term 77 76
tryStatement 62 47
type 16 13, 15
typeDeclaration 15 12
valueComponent 82 81
variableDeclaration 36 12, 13
variadicParams 43 41
whileStatement 58 47
WHITESPACE 98 -
Further Reading

http://objective.modula2.net

http://objective.modula?2.net/grammar.shtml

Status: October 4, 2009 Page 14 of 15

http://objective.modula2.net
http://objective.modula2.net
http://objective.modula2.net/grammar.shtml
http://objective.modula2.net/grammar.shtml

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project Page 15 of 15

