
Typography

• Production rules are shown in fixed width
• Alias rules are shown in italic fixed width
• Reserved words are shown in UPPERCASE BOLDFACE
• Other terminal symbols are shown in lowercase boldface
• Reserved symbols are shown in ‘single quotes’ or “double quotes”

EBNF Notation
• Alternatives are separated by a vertical bar |
• Groups of entities are enclosed in parentheses ()
• One or more occurrences are indicated by a trailing raised plus sign +
• Zero or more occurrences are indicated by a trailing raised asterisk *
• Zero or one occurrences are indicated by a trailing raised question mark ?

Compilation Units

(1) compilationUnit

programModule | definitionOfModule | implementationOfModule |

protocolModule

(2) programModule

MODULE moduleId (“[“ priority “]”)? “;”

importList* block moduleId “.”

(3) definitionOfModule

DEFINITION MODULE moduleId “;”

importList* definition*

END moduleId “.”

(4) implementationOfModule

IMPLEMENTATION programModule

(5) protocolModule

PROTOCOL protocolId (“(” adoptedProtocols “)”)? “;”

importList* (OPTIONAL? methodHeader)*

END protocolId “.”

(6) moduleId = ident

(7) priority = constExpression

(8) protocolId = ident

(9) adoptedProtocols = identList

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 1 of 15

Import Lists, Blocks, Declarations, Definitions

(10) importList

(FROM moduleId IMPORT (identList | “*”) | IMPORT identList) “;”

(11) block

declaration*

(BEGIN statementSequence)? END

(12) declaration

CONST (constantDeclaration “;”)* |

TYPE (typeDeclaration “;”)* |

VAR (variableDeclaration “;”)* |

procedureDeclaration “;” |

methodDeclaration “;”

(13) definition

CONST (constantDeclaration “;”)* |

TYPE (ident (“=” (type | OPAQUE) | IS namedType) “;”)* |

VAR (variableDeclaration “;”)* |

procedureHeader “;” |

methodHeader “;”

Constant Declarations

(14) constantDeclaration

ident “=” (constExpression | structuredValue)

Type Declarations

(15) typeDeclaration

ident (“=” type | IS namedType)

(16) type

namedType | anonymousType | enumerationType | setType | classType

(17) namedType = qualident

(18) anonymousType

arrayType | recordType | pointerType | procedureType

(19) enumerationType

ENUM (“(” baseType “)”)? identList? END |

“(” identList “)”

(20) baseType = qualident

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 2 of 15

(21) arrayType

ARRAY arrayIndex (“,” arrayIndex)*

OF (namedType | recordType | procedureType)

(22) arrayIndex = ordinalConstExpression

(23) ordinalConstExpression = constExpression

(24) recordType

RECORD (“(” baseType “)”)? fieldListSequence? END

(25) fieldListSequence

fieldList (“;” fieldList)*

(26) fieldList

identList “:”

(namedType | arrayType | recordType | procedureType)

(27) classType

“<*QUALIFIED*>”? CLASS “(” superClass (“,” adoptedProtocols)? “)”

((PUBLIC | MODULE | PROTECTED | PRIVATE)?

fieldListSequence)*

END

(28) superClass = qualident

(29) setType

SET OF (namedType | “(” identList “)”)

(30) pointerType

POINTER TO IMMUTABLE? namedType

(31) procedureType

PROCEDURE

(“(” formalTypeList “)”)?

(“:” returnedType)?

(32) formalTypeList

attributedFormalType (“,” attributedFormalType)*

(33) attributedFormalType

IMMUTABLE? VAR? formalType

(34) formalType

(ARRAY OF)? namedType

(35) returnedType = namedType

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 3 of 15

Variable Declarations

(36) variableDeclaration

ident (“[” machineAddress “]” | “,” identList)?

“:” (namedType | anonymousType)

(37) machineAddress = constExpression

Procedure Declarations

(38) procedureDeclaration

procedureHeader “;” block ident

(39) procedureHeader

PROCEDURE

(“(” ident “:” receiverType “)”)?

ident (“(” formalParamList “)”)? (“:” returnedType)?

(40) receiverType = ident

(41) formalParamList

formalParams (“;” (formalParams | variadicParams))*

(42) formalParams

IMMUTABLE? VAR? identList “:” formalType

(43) variadicParams

VARIADIC handle (“[“ indexParam “]”)? OF

IMMUTABLE? VAR? (ident ((“.” ident)* | (“,” ident)* “:” formalType)

(44) handle = ident

(45) indexParam = ident

Method Declarations

(46) methodDeclaration

methodHeader “;” block ident

(47) methodHeader

CLASS? METHOD

“(” ident “:” (receiverClass | “*”) “)”

(ident | methodArg) methodArg*

(“:” returnedType)?

(48) receiverClass = qualident

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 4 of 15

(49) methodArg

colonIdent “(” IMMUTABLE? VAR? ident “:” formalType “)”

Statements

(50) statement

(assignmentOrProcedureCall | methodInvocation |

 ifStatement | caseStatement | whileStatement | repeatStatement |

 loopStatement | forStatement | tryStatement | criticalStatement |

 RETURN expression? | EXIT)?

(51) statementSequence

statement (“;” statement)*

(52) methodInvocation

“[” receiver message “]”

(53) receiver

ident | methodInvocation

(54) message

ident (colonIdent expression)* |

(colonIdent expression)+

(55) assignmentOrProcedureCall

designator

(“:=” (expression | structuredValue) | “++” | “--” |

 actualParameters)?

(56) ifStatement

IF expression THEN statementSequence

(ELSIF expression THEN statementSequence)*

(ELSE statementSequence)?

END

(57) caseStatement

CASE expression OF case (“|” case)*

(ELSE statementSequence)?

END

(58) case

caseLabelList “:” statementSequence

(59) caseLabelList

caseLabels (“,” caseLabels)*

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 5 of 15

(60) caseLabels

constExpression (“..” constExpression)?

(61) whileStatement

WHILE expression DO statementSequence END

(62) repeatStatement

REPEAT statementSequence UNTIL expression

(63) loopStatement

LOOP statementSequence END

(64) forStatement

FOR ident “:=” expression TO expression (BY constExpression)?

DO statementSequence END

(65) tryStatement

TRY statementSequence

ON ident DO statementSequence

CONTINUE statementSequence

END

(66) criticalStatement

CRITICAL “(” classInstance “)”

statementSequence

END

(67) classInstance = qualident

Expressions

(68) constExpression

simpleConstExpr (relation simpleConstExpr | “::” namedType)?

(69) relation

“=” | “#” | “<” | “<=” | “>” | “>=” | IN | IS

(70) simpleConstExpr

(“+” | “-”)? constTerm (addOperator constTerm)*

(71) addOperator

“+” | “-” | OR

(72) constTerm

constFactor (mulOperator constFactor)*

(73) mulOperator

“*” | “/” | DIV | MOD | AND | “&”

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 6 of 15

(74) constFactor

number | string | qualident | “(” constExpression “)” |

(NOT | “~”) constFactor

(75) designator

qualident (designatorTail)?

(76) designatorTail

((“[” expressionList “]” | “^”) (“.” ident)*)+

(77) expressionList

expression (“,” expression)*

(78) expression

simpleExpression (relation simpleExpression | “::” namedType)?

(79) simpleExpression

(“+” | “-”)? term (addOperator term)*

(80) term

factor (mulOperator factor)*

(81) factor

number | string | designatorOrProcedureCall | methodInvocation

“(” expression “)” | (NOT | “~”) factor |

(82) designatorOrProcedureCall

qualident designatorTail? actualParameters?

(83) actualParameters

“(” expressionList? “)”

Value Constructors

(84) structuredValue

“{” (valueComponent (“,” valueComponent)*)? “}”

(85) valueComponent

constExpression ((BY | “..”) constExpression)? |

structuredValue

Identifiers

(86) qualident

ident (“.” ident)*

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 7 of 15

(87) identList

ident (“,” ident)*

Pragmas

(88) pragma

“<*” (

(IF | ELSIF) constExpression | ELSE | ENDIF |

(INFO | WARN | ERROR | FATAL) compileTimeMessage |

INLINE | NOINLINE | FRAMEWORK | IBACTION | IBOUTLET | QUALIFIED |

implementationDefinedPragma (“+” | “-” | “=” (ident | number))?

) “*>”

(89) compileTimeMessage = string

(90) implementationDefinedPragma = ident

Terminal Symbols

(91) ident

(“_” | “$” | LETTER) (“_” | “$” | LETTER | DIGIT)*

(92) colonIdent

ident “:”

(93) number

DIGIT+ |

BINARY-DIGIT+ “B” |

DIGIT SEDECIMAL-DIGIT* (“C” | “H”) |

DIGIT+ “.” DIGIT+ (“E” (“+” | “-”)? DIGIT+)?

(94) string

“‘” (CHARACTER | ‘“’)* “‘” |

‘“’ (CHARACTER | “‘“)* ‘“’

(95) DIGIT

“A” .. “Z” | “a” .. “z”

(96) DIGIT

BINARY-DIGIT | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

(97) BINARY-DIGIT

“0” | “1”

(98) SEDECIMAL-DIGIT

DIGIT | “A” | “B” | “C” | “D” | “E” | “F”

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 8 of 15

(99) CHARACTER

DIGIT | LETTER |

“ “ | “!” | “#” | “$” | “%” | “&” | “(” | “)” | “*” | “+” |

“,” | “-” | “.” | “:” | “;” | “<” | “=” | “>” | “?” | “@” |

“[” | “]” | “^” | “_” | “`” | “{” | “|” | “}” | “~” |

ESCAPE-SEQUENCE

(100)ESCAPE-SEQUENCE

“\” (“0” | “n” | “r” | “t” | “\” | “‘” | ‘“‘)

Ignore Symbols

(101)WHITESPACE

“ “ | ASCII-TAB

(102)COMMENT

NESTABLE-COMMENT | NON-NESTABLE-COMMENT | SINGLE-LINE-COMMENT

(103)NESTABLE-COMMENT

“(*” (ANY-CHAR | END-OF-LINE)* NESTABLE-COMMENT* “*)”

(104)NON-NESTABLE-COMMENT

“/*” (ANY-CHAR | END-OF-LINE)* “*/”

(105)SINGLE-LINE-COMMENT

“//” ANY-CHAR* END-OF-LINE

(106)ANY-CHAR

ASCII(8) | ASCII(32) .. ASCII(127) | ANY-UNICODE

(107)END-OF-LINE

ASCII-LF ASCII-CR? | ASCII-CR ASCII-LF?

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 9 of 15

Reserved Words

AND ARRAY BEGIN BY BYCOPY BYREF CASE CLASS CONST CONTINUE CRITICAL DEFINITION
DIV DO ELSE ELSIF END ENUM EXIT FOR FROM IF IMMUTABLE IMPLEMENTATION IMPORT IN
INOUT IS LOOP METHOD MOD MODULE NOT OF ON OPAQUE OPTIONAL OR OUT POINTER PRIVATE
PROCEDURE PROTECTED PROTOCOL PUBLIC RECORD REPEAT RETURN SET SUPER THEN TO TRY
TYPE UNTIL VAR VARIADIC WHILE

Reserved Symbols

:= + - * / ++ -- & ~ = # < <= > >= ' " () [] { } ^ | . , : ; .. :: <* *>

Pragma Identifiers

IF ELSIF ELSE ENDIF INFO WARN ERROR FATAL INLINE NOINLINE FRAMEWORK IBAction
IBOutlet QUALIFIED

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 10 of 15

Cross Reference

Symbol Rule Referenced from

actualParameters 80 52, 79

addOperator 68 67, 76

adoptedProtocols 9 5, 27

anonymousType 18 16, 18, 36

ANY-CHAR 103 100, 101, 102

arrayIndex 22 21

arrayType 21 18, 26

assignmentOrProcedureCall 52 47

attributedFormalType 33 32

baseType 20 19, 24

BINARY-DIGIT 94 90, 93

block 11 2, 38, 43

case 55 54

caseLabelList 56 55

caseLabels 57 56

caseStatement 54 47

CHARACTER 96 91

classInstance 64 63

classType 27 16

colonIdent 89 46, 51

COMMENT 99 -

compilationUnit 1 -

compileTimeMessage 86 85

constantDeclaration 14 12, 13

constExpression 65 7, 14, 23, 37, 57, 61,
71, 82, 85

constFactor 71 69, 71

constTerm 69 67

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 11 of 15

Symbol Rule Referenced from

criticalStatement 63 47

declaration 12 11

definition 13 3

definitionOfModule 3 1

designator 72 52

designatorOrProcedureCall 79 78

designatorTail 73 72, 79

DIGIT 93 88, 90, 95, 96

END-OF-LINE 104 100, 101, 102

enumerationType 19 16

ESCAPE-SEQUENCE 97 96

expression 75 47, 51, 52, 53, 54, 58,
59, 61, 74, 78

expressionList 74 73, 80

factor 78 77, 78

fieldList 26 25

fieldListSequence 25 24, 27

formalParamList 41 39

formalParams 42 41

formalType 34 33, 42, 46

formalTypeList 32 31

forStatement 61 47

handle 44 43

ident 88 6, 8, 13, 14, 15, 36, 38,
39, 40, 43, 44, 46, 50,
51, 61, 62, 73, 83, 84,
85, 87, 89

identList 84 9, 10, 19, 26, 29, 36, 42

ifStatement 53 47

implementationDefinedPragma 87 85

implementationOfModule 4 1

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 12 of 15

Symbol Rule Referenced from

importList 10 2, 3, 5

indexParam 45 43

LETTER 92 88, 96

loopStatement 60 47

machineAddress 37 36

message 51 49

methodArg 46 44

methodDeclaration 43 12

methodHeader 44 5, 13, 43

methodInvocation 49 47, 50, 78

moduleId 6 2, 3

mulOperator 70 69, 77

namedType 17 16, 21, 26, 29, 30, 34,
35

NESTABLE-COMMENT 100 99, 100

NON-NESTABLE-COMMENT 101 99

number 90 71, 78, 85

ordinalConstExpression 23 22

PointerType 30 18

pragma 85 -

priority 7 2

procedureDeclaration 38 12

procedureHeader 39 13, 38

procedureType 32 18, 21, 26

programModule 2 1, 4

protocolId 8 5

protocolModule 5 1

qualident 83 17, 20, 28, 45, 64, 71,
72, 79

receiver 50 49

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 13 of 15

Symbol Rule Referenced from

receiverClass 45 44

receiverType 40 39

recordType 24 18, 21, 26

relation 66 65, 75

repeatStatement 59 47

returnedType 35 31, 39, 44

SEDECIMAL-DIGIT 95 90

setType 29 16

simpleConstExpr 67 65

simpleExpression 76 75

SINGLE-LINE-COMMENT 102 99

statement 47 48

statementSequence 48 11, 53, 54, 55, 58, 59,
60, 61, 62, 63

string 91 71, 78, 86

structuredValue 81 14, 52, 82

superClass 28 27

term 77 76

tryStatement 62 47

type 16 13, 15

typeDeclaration 15 12

valueComponent 82 81

variableDeclaration 36 12, 13

variadicParams 43 41

whileStatement 58 47

WHITESPACE 98 -

Further Reading

http://objective.modula2.net

http://objective.modula2.net/grammar.shtml

EBNF Grammar for Objective Modula-2

Status: October 4, 2009
 Page 14 of 15

http://objective.modula2.net
http://objective.modula2.net
http://objective.modula2.net/grammar.shtml
http://objective.modula2.net/grammar.shtml

EBNF Grammar for Objective Modula-2

Copyright © 2009 The Objective Modula-2 Project
 Page 15 of 15

